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This book is designed to be read as a single document, in the order in which the chapters appear. In
each chapter questions, examples, definitions etc. are on a common numbering system, meaning
that Definition 4.7 is the 7th text box in Chapter 4. Similarly figures are on a separate common
numbering system, so that Figure 7.12 is the 12th picture in Chapter 7. This book also appears in
pdf format on Moodle, in which all references are hyperlinked for easier navigation.

At the end of each chapter is a summary, which explains how the content of the chapter fits into
the Leaving Cert syllabus and maps onto past (and possibly future) exam questions, as well as
commenting on the differences between the old (pre-2023) and new syllabus. There is also a set of
homework problems (separated by section) with solutions provided at the end of the chapter. This
is to be completed as we work through the chapter. There is also a revision section at the end of
each chapter for students re-reading the chapter or preparing for a test.

This book is comprehensive, assuming no knowledge of Applied Maths beyond this book and so
you don’t need any other book or notes to study for the course. It is also designed so that it can
be read as revision weeks or months after we first cover them. As such you shouldn’t need to
spend much time taking notes and can instead concentrate on the class. However you may want to
take notes occasionally if there is something mentioned in class that isn’t covered clearly in the book.

If you have any questions about anything you can reach me at
bwilliamson @instituteofeducation.ie.
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lew Syllabus Exam Questions

A Not So New Syllabus

Although we have few past papers for the new Applied Maths syllabus, much of the newer parts of
the syllabus have existed in an almost identical way in other subjects in other parts of the world.
In particular, the topics in Part I have long been part of the syllabi of some A level exams called
“Further Decision 1” and “Further Decision 2” (abbreviated to D1, D2) operated by Edexcel.

Moodle Resources

There is a zip file on Moodle titled “Edexcel Past Exams”. In this folder there are 6 subfolders,
one each for new and old D1, D2 and International D1 past exam papers (there is no International
A Level D2 exam). As this is not our syllabus to begin with we’re not concerned with syllabus
changes between the new and old exams.

In each folder there are three subfolders, one containing the question papers, one containing the
marking scheme, and one containing the answer booklet. The answer booklet can be ignored for
most problems unless it is specifically referenced in the exam paper. Collectively these folders
contain exam papers going back to 2001, often with multiple exams per year. Any question with an
(R) are exams for regional areas whose time zone is not GMT and so were given on the same date
but at a different time to the main exam (and so are different but equally relevant exams). There is
also an Excel spreadsheet in each folder showing what questions are relevant to each topic we have
studied. Everything except dynamic programming can be found in the D1 exams, with dynamic
programming appearing in the D2 exams. Not everything in these exams is covered in the Applied
Maths syllabus, so a blind reading without this spreadsheet is not recommended.

New Syllabus Applied Maths Papers

There is one sample paper for the Applied Maths exam released by the SEC, as well as the 2023
paper which is the first year to cover the new syllabus. These are also available on Moodle and the
relevant questions will be studied in their respective chapters. The differences between these papers
and the Edexcel exam papers will also be highlighted where relevant.






2.1 What is a Graph?

Definition 2.1 A graph is a collection of vertices (or nodes), and edges (arcs) connecting some
or all of them.

Here are some examples of graphs.

oN=G °‘° °§‘°

(a) (b) (©)

Figure 2.1

We will often talk about “the vertex A”, or “the edge AB”. So why do we care about graphs? Graphs
can provide a simple representation of many phenomena.

2.2 Graph Types, Properties and Definitions

The following is a (fictional) graph representing cities in Europe with an airport. Cities are
connected by an edge if there is a direct flight between them.
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)
o)

Figure 2.2

From this graph we can figure out the possible ways we can get from, say, Dublin to Warsaw. This
graph can also tell us the route with the fewest number of stops. However what if we care about the
cost of our trip?

Definition 2.2 A weighted graph is a graph where a non-negative number (called a weight) is
assigned to each edge.

The following is an updated version of Figure 2.2 where the weights represent the cost, in Euros, of
each flight between the two cities.

Using this graph we can not only see which routes have the shortest number of flights, but that the
cheapest route is Dublin — London — Warsaw for €290.

Sometimes it makes sense to consider a connection between nodes that only goes one way.
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Definition 2.3 A directed graph (or digraph for short) is a graph in which each edge has an
arrow representing direction. Otherwise it is an undirected graph.

For example, the following graphs show a group of people and their connections on social media.
On the first graph two people are connected by an edge if they are friends on Snapchat (which is a
two-way relationship). On the second, a directed edge from one node A to another edge B is drawn
if person A follows person B on Instagram (which can be a one-way relationship).

(a) Friendships on Snapchat (b) Follows on Instagram

Figure 2.3

Consider the map below that shows three islands, and the bridges that go between them. How
would we represent this as a graph? We could represent each island as a vertex, and each bridge as
an edge. This leads to the given graph.

&

(a) A map of the islands (b) A graph representation
Figure 2.4
Note that there is more than one edge between islands A and B, and that there is an edge from A

back to itself. Although we haven’t seen this so far, there is nothing wrong with it. However in
many situation we don’t expect to see these types of graphs.

Definition 2.4 A loop is an edge from a vertex back to itself. A graph is simple if it has no
loops and no multiple edges between any two nodes, otherwise it is a multigraph. In the case of
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a directed graph, edges are only considered multiple edges if they are between the same nodes
and in the same direction.

Question 2.5 Which of the following graphs would you expect to be simple, and which ones
might not be?

(a) A graph where each node is a country, and two countries are connected by an edge if they
played a football match against each other in 2021.

(b) A directed graph where each node is a person, and an edge with an arrow from person A to
person B is drawn if person A is a parent of person B.

(c) A directed graph where each node is a person, and an edge with an arrow from person A to
person B is drawn if person A gave a haircut to person B during the Covid-19 lockdown.

You may have noticed by now that there are multiple ways to draw the same graph, or describe the
same situation using a graph. The three graphs below are the same.

ef‘eao o0
1! H O ® @

(a) (b) (©
Figure 2.5
Even changing the names of the vertices doesn’t change that it’s the same graph, much like the

equations x> +7x+ 12 = 0 and 2 4 7t + 12 = 0 are the same equations. If your friend is studying
one and you’re studying another, you’re really looking at the same thing.

Definition 2.6 Two graphs which contain the same number of vertices connected by edges in
the same way are identical or isomorphic. In the case of weighted and/or directed graphs, the
edges must also have the same weight and/or direction, and in the cases of multigraphs multiple
edges and loops must appear in the same way.

Note 2.7 To see if two graphs are isomorphic, there are a couple of approaches. You can look at
one graph, imagine moving the vertices around and see if you can make it look like the other graph,
ignoring vertex names. This can actually be done online, at csacademy.com/app/graph_editor,
where you can physically drag the vertices around and watch the visualisation of the graph
change. You can also take a more mathematical approach by associating each vertex in one graph
with a vertex in one another without doubling up, in an “edge-preserving way”. In the case of the
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second and third graph above, we have the following association.

A—W,
B— X,
C—Y,
D—Z.

This association is edge preserving, because in the first graph AB is an edge, and in the second
graph WX is an edge. On the other hand, BD is not an edge, and neither is XZ.

Question 2.8 Which of the following pairs of graphs are isomorphic?
() (b)
Figure 2.6

(a) (b)

Figure 2.7
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(a) (b)
Figure 2.8

Note 2.9 If two graphs have a different number of vertices or a different number of edges they
cannot be isomorphic. Moreover, if one graph has a vertex with, say, 5 edges coming out of
it, and there is no vertex in the other graph with 5 edges coming out of it then they can’t be
isomorphic.

When discussing the graph of airports and their connecting flights we talked about using the graph
to figure out how to get from Dublin to Warsaw. This is a common topic of study when looking at
graphs; excursions around the graphs via the edges.

Definition 2.10

1. If two vertices have an edge joining them, we say they are adjacent. The joining edge is
said to be incident with each of the vertices. When talking about incidence/adjacence in a
directed graph we ignore direction.

2. The number of edges incident to a vertex is the degree, or order of the vertex. Loops
count as 2 edges.

3. A walk of length n is a sequence of n+ 1 vertices, where consecutive vertices are adjacent.
It is of length n because instead of considering the n+ 1 vertices we can consider the n
relevant incident edges. In the case of a directed graph the edge direction must be from the
previous vertex to the next one. A walk is closed if the first and last vertex are the same,
and open if they are distinct.

4. A path is a walk in which no vertex is repeated. All paths are open.

5. A cycle is a closed walk in which no vertices (except for the first and last) are repeated.

The degree of a vertex is not a concept we will use very often, save for this result we will use
later.

Theorem 2.11 — Hand-shaking Lemma. The sum of the degrees of all vertices in a graph is
equal to twice the number of edges.

We won’t use the concept of degree or this result in any complicated mathematics. However later
on when we list edges we will use it to make sure we haven’t missed any edges.

Described less formally, a walk is any route in a graph between vertices along edges. A path is a
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walk that doesn’t visit any vertex more than once, and a cycle is a walk that begins and ends at the
same vertex, but otherwise doesn’t visit any vertex more than once. Consider the following graph.

Figure 2.9

Here ABDACD is an open walk, but it is not a path because D and A are visited more than once.
ABDF 1is a path, and ABDFA is a cycle. ABCD isn’t even a walk, because there is no edge
connecting B and C.

Note 2.12 Between walks, paths and cycles you can remember which is which in the following
way.

Type In common usage Mnemonic

WALK | Walks around town can go in circles all day. | WAnder as you LiKe

PATH Paths are direct even if they are not straight. | PArT(H)icular about the nodes.
CYCLE | Cycles are sequences that repeat in a loop. CYCLE = CIRCLE

Table 2.1

Sometimes we are interested not in particular paths between vertices, but whether such a path exists
at all.

Definition 2.13
A graph is connected if there is a path between any two vertices. Otherwise it is disconnected.

Question 2.14 Which of the following graphs would you expect to be connected?

(a) Each vertex is a town/city in the island of Ireland with a train station. Two vertices are
adjacent if they are neighbouring stops on a train line.

(b) Each vertex is a town/city in the UK (so including Northern Ireland) with a train station.
Two vertices are adjacent if they are neighbouring stops on a train line.
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(c) Each vertex is a student in this class. Two students are adjacent if they ever went to the
same secondary school (even at different times).

(d) Each vertex is a county in Ireland. Two counties are adjacent if they share a border.

If we’re dealing with disconnected graphs, we may be interested in looking at one part of the graph.
This leads to the following definitions.

Definition 2.15

1. The graph H is a subgraph of the graph G if all of the vertices and edges in H are vertices
and edges in G.

2. A connected component H of a graph G is a connected subgraph such that if A is a vertex
in H, all edges incident to A in G are in H.

Note 2.16 Less formally, a subgraph H of a graph G is the graph G with some (or maybe none,
technically G is a subgraph of itself) of its vertices and edges removed. Note that if a vertex is
removed all incident edges must be removed; we can’t have edges going to nowhere.

Note 2.17 Connected components are a more complex idea. According to our definition, a
connected component H of G that contains A must contain all edges incident to A. This means
that all vertices adjacent to A must also be in H, along with all edges incident to them, and so
on. Therefore H contains all vertices connected by a path to A along with all of their incident
edges and can hence be described as the largest connected subgraph that contains A. Even less
formally, when looking at a disconnected graph such as Figure 2.10, each of the two “pieces” is
a connected component.

Question 2.18 Given the following graph, which of the following are subgraphs? Which
subgraphs are connected components?

O
o0

Figure 2.10
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O c‘e

(a)

OO OC

®
OO QO QG
e'e o'e 0

Figure 2.11

2.3 Adjacency Matrices

Given a graph, how many walks, or paths are there between two vertices? Counting the number of
paths between two vertices is a hard problem that people still study today. Here we will stick to
counting the number of walks between two vertices. To do this we will first define the adjacency
matrix.

Definition 2.19 The adjacency matrix of a graph is a rectangular array of numbers where the
number in row A, column B is the number of edges from vertex A to vertex B.

Example 2.20 Write down the adjacency matrix of the following graph.
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Figure 2.12

This graph has the following adjacency matrix.

A B
A/s1 2 1
B<201>
c\1 1 0

Note 2.21 When writing adjacency matrices the indexing goes from top to bottom, and from
left to right, like how we write.

Matrices are used in a wide variety of contexts. The matrix in Example 2.20 is a 3 x 3 matrix,
because it has 3 rows and 3 columns (to be clear, rows are horizontal lines and columns are vertical
lines). We will sometimes refer to “row A” as the row associated with vertex A, or “the 1st row”,
which is the first row from the top completely independent of the indexing. Not all matrices are
square, or have non-negative or even integer entries. The matrix

1 3 7 85
01 -4 —-12 0
is a 2 x 4 matrix because it has 2 rows and 4 columns (the rows come first). However In Leaving

Cert Applied Maths we will only deal with square matrices. We can do basic arithmetic with
matrices, namely addition and multiplication. Consider the two matrices

w=(53) v=(57)

Because they have the same dimensions, we can add them. To get the matrix M + N, we simply
add the terms in the same position;

(12 5 1\ [ 145 2-1\ [ 6 1
M+N_(—3 5>+<—2 0 )‘(—3—2 5+0>_<—5 5)'

We can also multiply these matrices, because they are square matrices of the same size (some
rectangular matrices of different sizes can also be multiplied but we won’t discuss this here).

(5 3)(5 )-8 ) - (5 )



2.3 Adjacency Matrices 15

What is going on here? To get the term in the 1st row, 1st column of MN, we go along the 1st row
of M and the 1st column of N, multiplying terms as we go and adding the products together. To get
the term in the 1st row, 2nd column of MN, we go along the 1st row of M and the 2nd column of N,
and so on. This method can be extended to 3 x 3 matrices. If

3 2 =5 —4 -2 3
P= 1 -3 4 , 0= -1 0 2],
-2 0 1 3 =21
then
3 2 =5 -4 -2 3
PO = 1 -3 4 -1 0 2
-2 0 1 3 =21
3(—4)+2(—1)-5(3) 3(=2)+2(0)—5(-2) 3(3)+2(2) —=5(1)
= 1(—4)—3(—1)+4(3) 1(=2)—3(0)+4(-2) 1(3)—3(2)+4(1)
—2(—=4)4+0(—=1)+1(3) —2(-2)4+0(0)+1(—-2) —2(3)+0(2)+1(1)
-29 4 8
= 11 —-10 1 .
11 2 =5

Question 2.22 Calculate NM and QP.

Note 2.23 As we can see, MN # NM and PQ # QP, so matrix multiplication is not commutative.

We can also take powers of square matrices, as exponentiation is just repeated multiplication.

M2 — MM — 1 2 I 2\ 1(1)+2(-3) 1(2)+2(5) (=5 12

N ~\ -3 5 -3 5 ) \=-3(1)+5(-3) -3(2)+5(5) ) \ —18 19 )°
We can take higher powers of matrices using lower powers. Matrix indices obey the same rules as
indices for numbers. In particular

Mm+n — MmMn

for any m,n € N. Although matrix multiplication is not commutative (MN # NM usually), it is
associative, 1.e.

M3 = (MM)M = M*M,
= M(MM) = MM?
so that we can calculate M by calculating M>M or MM?. Similarly,
M* = MM
= M>M?
= MM°.

Question 2.24 If
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calculate R? and R°. ‘

So why do we care about powers of matrices? Back to graphs, we have the following re-
sult.

Theorem 2.25 Given a graph with adjacency matrix M, the term in row A, column B of M" is
the number of walks of length n from vertex A to vertex B.

How do we use this theorem? Consider the adjacency matrix we had before:

A B C
A/l 2 1
B<201).
c\1 1 0

Call this matrix M, and drop the indexing on the side when do our arithmetic.

1 21 1 21 6 3 3
M=MM=1| 2 0 1 201 |=|3 52
110 110 322
6 3 3 1 21 15 15 9
M=M*M=| 3 5 2 201 |=(15 8 8
322 1 10 9 8 5
6 3 3 6 3 3 54 39 30
M =M*M*=1| 3 5 2 352 |=|39 38 23
322 322 30 23 17

So considering walks from A to C, there are 3 walks of length 2, 9 walks of length 3 and 30 walks
of length 4. Considering walks from B back to itself, there are 5 walks of length 2, 8 walks of
length 3 and 38 of length 4.

Question 2.26 A certain graph has the following adjacency matrix (note that this is the same
matrix as that in Question 2.24).

A B
A (3 1
B\2 2
(a) How many walks of length 2 are there between A and B?

(b) How many walks of length 3 are there between A and B?

(c) How many walks of length 3 are there from A to itself?

Note 2.27 It is common for students to forget whether Theorem 2.25 applies to paths or walks.
It may help to remember that Matrices tell us about Walks because W is an upside-down M.

Note 2.28 Calculating matrices is cumbersome, and it gets more time-intensive the larger the ma-
trix is and the higher the power is. You can use matrix calculators online (e.g. matrixcalc.org/en)
to calculate products and powers of larger matrices and matrices to a high power. However it is
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‘ important to be able to work with smaller matrices by hand.

2.4 Adjacency Matrices for Digraphs

Example 2.29 Write down the adjacency matrix of the following graph.

This graph has adjacency matrix

Y IO v

_——_—_o~N
coc o~
oo —~oX
SO~ O O N

Question 2.30 Write down the adjacency matrix of the following graph.

Note 2.31 Unlike with the previous adjacency matrix, in the matrix in Example 2.29 the term in
row P, column R is 0 but the term in row R, column P is 1. This is because there is an edge from
R to P, but not from P to R as our graph is directed. However Theorem 2.25 still holds. If we
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call this matrix M, we can calculate that
1 010
1 1 0 1
2 __
M= 1 1.0 0|’
01 00
1 1 01
21 10
3 _
M= 1 110
1 010
So when it comes to walks of length 2, there is a walk from Q to P but not from P to Q. There
are 2 walks of length 3 from Q to P.

To formalise the contrast between adjacency matrices for directed and undirected graphs we have
the following definition and result.

Definition 2.32 A matrix is symmetric if it is square and the i-th row is the same as the i-th
column for all 7.

The reason we use the word symmetric is that you can see the symmetry of the matrix if you view
the line from the top-left to bottom-right as the axis of symmetry.

‘ Theorem 2.33 A graph is undirected if and only if its adjacency matrix is symmetric. ‘

This may be confusing, as it may have seemed that a graph is directed whenever its edges have
arrows representing direction. However if a digraph has a symmetric adjacency matrix then every
edge has arrows in both directions. In this case it is fundamentally indistinguishable from an
undirected graph, and so we can think of it as undirected. For example, both of the graphs below
can be seen as identical and undirected.

() (—()

(a) (b)
Figure 2.13

Question 2.34 Write down the adjacency matrix of the following graphs, and draw the graphs
of the given adjacency matrices.
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O © /@\/G)
"o 7P

() (b)

Figure 2.14
P QO R S T
A B C P,s1 1 1 1 O
A/ 1 1 o(1 0 1 0 1
B (1 0 1) R10O 0 0 1 1
c\l1 1 0 S{2 0 1 0 1
T \0 0 1 2 0
2.5 Trees
One example of a graph we’ve avoided so far is a family tree.
Andrei Kolmogorov
Yakov Sinai | Eugene Dynkin Igor Girsanov
Jonathan Mattingly |T0uﬁc Suidanl |Mark Friedlinl Valery Korobov

| Brendan Williamson | Sean Lawley

Figure 2.15: A partial family tree of mathematicians and their PhD advisors.

This is how we usually see family trees, but by drawing an edge from “parent” to “child” we can
get something more like the graphs we’re used to.

There are a large class of graphs that can be arranged to look like family trees, i.e. they are
isomorphic to a tree graph. Although this is where they got their name, it’s actually not why we
care about them.

Definition 2.35 A tree is a connected graph that contains no cycles.

This definition, although it seems disconnected from our original view of a family tree, makes sense
when you think of an actual tree. In a tree the trunk breaks into branches, then more branches, and
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so on, but branches never join up again, which would be necessary to make a cycle.

Theorem 2.36

1. A tree with n vertices has n — 1 edges.

2. For any two vertices in a tree, there is exactly one path between them.

So why do we care about trees? Many structures other than families can be represented as tree
graphs, such as corporate hierarchies, file systems and decision trees, but that’s not the real reason.
Consider the following problem. A weighted graph, shown below, represents six locations as
vertices. The edges are proposed routes for power lines, and the weight is the cost (in millions of

Euros).
A

GG

6 4

E
g8 ~—/ 9

Figure 2.16

Because power moves quickly and we’re not worried about overloading a single line, we want to
connect every vertex in the cheapest way. The resulting graph that we make will be a tree, because
if it has a cycle we can remove an edge and every vertex will still be connected. There are also
issues if cycles are included in fast moving networks such as power, phone or internet lines or
networks. This motivates the following definitions.

Definition 2.37

1. A spanning tree of a graph G is a subgraph of G which is a tree connecting all vertices of
G.

2. A minimum spanning tree of a weighted graph G is a spanning tree with minimum total
weight across all edges.

Note that for a graph G there may be more than one minimum spanning tree, i.e. two or more
spanning trees may have equal total weight which is also the minimum possible weight for a
spanning tree.

So how do we find a minimum spanning tree of the graph in Figure 2.16? We’ll answer this
question, and more, in Chapter 3.
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Exam Questions

There are few A level exam questions on material in this chapter, which existed mostly to prepare
students for later chapters. Those exam questions that exist often ask students about definitions and
applications of the Handshaking Lemma.

Example 2.38 — Old D1 January 2002 Q3(ii).

(ii) A connected network N has seven vertices.
(a) State the number of edges in a minimum spanning tree for N.
1)

A minimum spanning tree for a connected network has n edges.

(b) State the number of vertices in the network.

1)

Figure 2.17

The answer to (a) is 6 and relies on the student knowing that the minimum spanning tree also has
7 vertices, and hence as a tree has 7 — 1 = 6 edges. Similarly, the answer to (b) is n+ 1.

Example 2.39 — Old D1 January 2007 Q5(a).

(a) Explain why a network cannot have an odd number of vertices of odd degree.

(2)

Figure 2.18

The Handshaking Lemma states that the sum of the degrees of a network is twice the number of
edges. In particular this means that the sum of the degrees is even, and so an even number of
degrees must be odd numbers.

Example 2.40 — Old D1 January 2010 @2(a).
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Prim’s algorithm finds a minimum spanning tree for a connected graph.
(a) Explain the terms

(1) connected graph,

(11) tree,

(1i1) spanning tree.

Figure 2.19

A connected graph is a graph where there is a path between any two vertices. A tree is a connected
graph containing no cycles. A spanning tree is a subgraph of a graph that is a tree and contains
all vertices in the original graph.

Example 2.41 — Old D1 January 2015 Q5(d).
A connected graph V has n nodes. The sum of the degrees of all the nodes in V is m. The graph T
is a minimum spanning tree of V.
(d) (i) Write down, in terms of m, the number of arcs in V.
(i) Write down, in terms of n, the number of arcs in T,

(ii1) Hence, write down an inequality, in terms of m and n, comparing the number of arcs in T
and V.

Figure 2.20

The answer to (i) is %5 from the Handshaking Lemma. The answer to (ii) isn—1 as T is a tree
containing all #n nodes from V. The answer to (iii) is

n—1<

N[ 3

as T is a subgraph of V.

One major difference between the Edexcel syllabus and the Leaving Cert syllabus is that the Edexcel
syllabus does not include adjacency matrices, or matrices in general. When revising this chapter,
students should separately make sure they understand adjacency matrices, can calculate powers of
adjacency matrices and understand their significance.

Example 2.42 — Sample Paper Q1(a).
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Question 1
0 0 2
(a) A directed graph is represented by the adjacency matrix M = (1 1 0).

(i) Draw the graph represented by M.

(ii) Calculate M2.
(iii) What information is provided by the elements of M??

Figure 2.21

()
Figure 2.22
(ii)
0 0 2 0 0 2
M=|1 10 1 10
010 010
020
=112
110

(iii) The elements in M? are the number of walks of length 2 from one vertex to another. For
example, from row 1 column 2 there are 2 walks of length 2 from A to B.

Summary

e Know the definition of a directed/undirected, weighted/unweighted graph, loop, and
simple graph/multigraph.

e Be able to spot if two graphs are isomorphic.

¢ Know the definition of incidence, adjacence, degree and understand the Handshaking Lemma.



2.8

24 Chapter 2. Infroduction to Graphs

¢ Know the definition of a walk/path/cycle, subgraphs, connected components and trees/spanning
trees/minimum spanning trees.

e Know how to write an adjacency matrix given a graph, and be able to draw a graph given an
adjacency matrix, including whether or not the adjacency matrix is representing a directed or
undirected graph.

e Know how to multiply small square matrices by hand, and larger square matrices using a
computer.

Notes on the Exam, and Work Still to Cover

This chapter serves mostly as a foundation for the rest of the chapters in Part I, and so few exam
questions will be based on this topic. The exam questions most likely to appear are those which ask
students to find adjacency matrices given graphs and vice versa, calculate products or powers of
matrices and ask students to use powers of matrices to give the number of walks between vertices of
a certain length. There may also be some exam questions which ask for definitions, or ask students
if certain walks are paths, certain graphs are trees, certain subgraphs are connected components,
etc.However this is speculative after only having two past papers (including the sample paper).
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2.9 Homework

Graph Types, Properties and Definitions

1. Which of the following graphs are simple, and which are multigraphs? Explain your reason-
ing.

Figure 2.23

2. In the following graphs, write down the vertices adjacent to each vertex, the edges incident
to each vertex, and the degree of each vertex. Then count the number of edges, and hence
verify the Hand-shaking Lemma.

(a)
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Figure 2.25

(b)

0 Oy

Figure 2.27

Figure 2.29

3. Which of the following pairs of graphs are isomorphic? Explain your answer.

(a)

Vertex | Adjacent Vertices | Incident Edges
A B,C,D AB, AC, AD
B
C
D
E
F
Table 2.2
Vertex | Adjacent Vertices | Incident Edges
U
v
Y
X
Y
Z
Table 2.3
Vertex | Adjacent Vertices | Incident Edges
A
B
C
D
Table 2.4
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Figure 2.30

(b)

Figure 2.31

(©)

() ()
C® L ®» (® L ’Q

Figure 2.32

4. In each of the following graphs, write down a walk that is not a path, a path, and a cycle.
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Figure 2.33

5. Given the following graph, draw

(a) a connected component,
(b) a connected subgraph that is not a connected component,

(c) adisconnected subgraph.

Figure 2.34

Adjacency Matrices

6. Given the following graphs, write down their adjacency matrices.
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® eé ®
= ce‘g’e

(c) (d)

Figure 2.35

7. Given the following adjacency matrices, draw the corresponding graph.

P O R ST
A B C A?fgll) P/l 1 0 2 0
A0 1 0 5(1 0o 1 o oft o 1 0 0
B<101> clo 1 o0 o Rlo 1 0 1 1
c\0 1 0 b\o 1 o0 o s{2 o 1 0 2

T\0 0 1 2 1

8. Given the following matrices,

(a) calculate M? by hand (show your work),

(b) calculate M3 by hand (show your work),

(c) calculate N° using a computer (no need to show work).
(d) How many walks of length 3 are there from A to C?

(e) How many walks of length 5 are there from P to 7?



30 Chapter 2. Introduction to Graphs

P Q RS T
A B C P/ 1 0 2 0
A0 0 1 o[t o 1 0 0
M=B<101> N=R[0o 1 0 1 1
c\o 1 0 sl2 o 1 0 2
T\0 0 1 2 1

Trees

9. Given the following graph, explain why it is not a tree, and find any spanning tree of the
graph.

Figure 2.36
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2.10 Homework Solutions

Graph Types, Properties and Definitions

1. (a) Simple, no loops or multiple edges.
(b) Simple, no loops or multiple edges.
(c) Multigraph, multiple edge XY
(d) Multigraph, loop at D.

(e) Simple, no loops or multiple edges.

(f) Multigraph, loop at P.

Vertex | Adjacent Vertices | Incident Edges
A B,C,D AB, AC, AD
B A AB
C A, D AC,CD
D A,C,EF AD, CD, DE, DF
E D,F DE, EF
F D,E DF, EF
Figure 2.37 Table 2.5
Note: ED instead of DE, etc., are also acceptable.
Sum of Degrees =3+ 1+24+4+242
= 14.
Number of Edges=7 v
(b)
Vertex | Adjacent Vertices | Incident Edges

U \Y% uv

0 9. v U, W UV, VW

O W VX W

X WY, Y,Z WX, XY, XY, XZ
Y X, X, Z XY, XY, YZ

@ Q Z X, Y X7,YZ

Figure 2.38 Table 2.6

Note: It is recommended to list adjacent vertices/incident edges multiple times as it
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makes counting degree easier, and indicates that there are repeated edges.

Sum of Degrees =1+2+2+4+3+2
= 14.
Number of Edges =7 v

(©
e Vertex | Adjacent Vertices | Incident Edges
A B,C AB, AC
‘Q ° B A,CD AB, BC, BD
C A,B,D AC,BC,CD
e D B,C,D BD, CD, DD, DD
Figure 2.39 Table 2.7

Note: It is necessary to list loops as edges, and self-adjacent vertices as so. It is actually
recommended to list loops twice so that they can be easily counted twice when counting
degree.

Sum of Degrees =2+3+3+4
=12.
Number of Edges=6 v

3. (a) Isomorphic, both graphs have the same edges.
(b) Not isomorphic, different number of edges.
(c) Not isomorphic, different number of edges.

4. ACDAB is a walk, CDAB is a path and ACDA is a cycle. There are many other answers to
this question.

®B—@ (®) ®
() () ()
D—® BO—® O—®

(a) (b) (©

There are multiple answers to this question.
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Adjacency Matrices

A B C D E F

—

—

0O 0 0 0 O

S — O

S O O

O - — O
(\

<m0 A M MK

~
<
~

N}

o

o

H—~O O OO
n o — o o O
Yo oo oo
O—o —0o o
A — — — O

AN v H

(b)

—_ o = O O O

S — O O O O
D> 2 X =N

~
®)
—

(©

(b)

A —~ — —

U — — O

M — O — — °

<O — — O

(©)
()

<mOA

(d)
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8. (a)
010
M= 0 1 1
1 0 1
(b)
1 1
M=1111
11
(©
186 109 133 303 209
109 30 74 90 109
N =1| 133 74 96 207 154
303 90 207 265 315
209 109 154 315 240
(d 1
(e) 209
Trees

9. There is a cycle ACDA. One can get a spanning tree by removing any one of AC, AD, CD,
and any one of DE, EF, DF.
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Revision

When revising this chapter, students should make sure they know all of their definitions, as it is
possible that exam questions may ask for them in some form. Beyond that, the only problems that
students can practice are those where they multiply matrices. By using matrix calculators such as
matrixcalc.org/en, students can make an unlimited amount of their own matrices to multiply or take
powers of and check their answers afterwards.

As this is a new topic pas exam questions on this chapter are only from the sample paper (Q1 (a))
and the 2023 paper (Q1 (a)).






gorithms on Graphs

1.4 = Ty TS

3.1 What is an Algorithm?

An algorithm is a sequence of well defined instructions designed to solve a specific problem. We
will use algorithms to solve many problems on graphs. In particular, both Kruskal’s Algorithm and

Prim’s Algorithm give us a minimum spanning tree of a simple, connected, weighted, undirected
graph.

3.2 Kruskal’s Algorithm

Algorithm 3.1 — Kruskal’s Algorithm. To find a minimum spanning tree of a simple, connected,
weighted, undirected graph G with n vertices, Kruskal’s algorithm consists of the following steps.

1. List the edges in ascending order of weight. If two edges have the same weight, order
doesn’t matter.

2. Beginning with the subgraph H which contains all vertices and no edges, add the edge of
least weight to H.

3. If the next edge on the list does not create a cycle, add it to H. If it does, cross it out.

4. Repeat step 3 until you have n — 1 edges. H is now a minimum spanning tree of G.

Example 3.2 Using Kruskal’s Algorithm find a minimum spanning tree for the following graph.
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18
6 ' 4

E
8§ ~—/ 9

Figure 3.1

Step 1

First we list all of the edges in ascending order of weight.

Edge | Weight
CE 4
CF 5
BE 6
BD 7
DE 8
BC 8
EF 9
AB 12
AC 18

It’s important to check that we haven’t missed any edges. Using the Handshaking Lemma
(Theorem 2.11), our vertices have sum of degrees 244 44 4244 42 = 18 so we should have
% =9 edges, which we do. This is our main use for the Handshaking Lemma in this course. Our
edges are also in the right order.

Steps 2,3 & 4

We include CE as the first edge. We can add CF, then BE, and BD. We can’t then add DE as
it would create a cycle. We also can’t add BC or EF, but we can add AB. Now that we have 5
edges we know we are done.
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© © ©

& © 5
OJORONO @4@ O, (4

c)

Figure 3.2
Edge | Weight
CE 4 v
CF 5 v
BE 6 v
BD 7 v
DE 8 X
BC 8 X
EF 9 X
AB 12 v
AC 18
Figure 3.3: Minimum spanning tree Table 3.1: Included

and excluded edges

Note 3.3 Notice that we could have swapped the order of the edges DE and BC in the list.
However it wouldn’t have changed our decision making; neither edge would be included anyway.

Rule 3.4 In order for more than one minimum spanning tree to exist there have to be at least
two edges of equal weight, and the choice to include one must affect whether or not another
is included. In other words, when two or more edges have equal weight, deciding what order
they appear in the list must affect the final tree constructed. If this is not the case the minimum
spanning tree found is unique.
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Question 3.5 Use Kruskal’s Algorithm to find a minimum spanning tree of the graph below.

OO

11

Figure 3.4

Question 3.6 Use Kruskal’s Algorithm to find a minimum spanning tree of the graph below.

O——O

10

11

Figure 3.5
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Nofe 3.7 Notice that in Question 3.5 edge AC is included but BD is not, regardless of the order
in which the edges are placed. However in Question 3.6 whichever edge is higher up the list is
included and then the other is not, making Figure 3.5 the first graph we have seen with more than
one minimum spanning tree.

Prim’s Algorithm

There is a second algorithm for finding the minimum spanning tree of a graph. It is known as
Prim’s Algorithm, although it was originally published by Jarnik in 1930 before being republished
by Prim (1957) and Dijkstra (1959). It will still find a minimum spanning tree, it just differs in its
execution. We will discuss the differences between the two methods later.

Algorithm 3.8 — Prim’s Algorithm. To find a minimum spanning tree of a simple, connected,
weighted, undirected graph G with n vertices, Prim’s algorithm consists of the following steps.

1. Choose a vertex at random. This creates the tree T'.

2. Choose the edge of least weight that is incident to this vert Add this edge and the corre-
sponding adjacent vertex to 7.

3. Choose the edge of least weight that is incident to only one vertex in 7. Add this edge and
the corresponding adjacent vertex to 7.

4. Repeat step 3 until 7 has n — 1 edges, or equivalently contains all vertices in G. T is now
a minimum spanning tree of G.

Note: If at any point there is a choice between two or more edges of equal weight, choose one at
random.

Note 3.9 T is a tree at all stages in Algorithm 3.8, eventually becoming a minimum spanning
tree. This is why in step 3 we choose an edge which is incident to only one vertex in 7. If it was
incident to both it would create a cycle.

Example 3.10 Using Prim’s Algorithm, find a minimum spanning tree for the following graph.
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18
6 ' 4

E
8§ ~—/ 9

Figure 3.6

Let’s start with vertex E. The following sequence of graphs shows the evolution of our tree T
until we have a minimum spanning tree.

Figure 3.7

To better understand the steps, we forst chose vertex E at random. We then had four edges to
choose from, DE, BE, CE and FE. Edge CE has the lowest weight, so we added CE and vertex




3.3 Prim’s Algorithm 43

C to the tree 7. We then had six edges to choose from, AC, BC, BE, DE, FE and CF. Edge CF
had the lowest weight so we added CF and F. We then added edge BE (and B), then BD (and
D), and finally AB (and A). As we then had 5 edges, or equivalently T contains all vertices, we
were done.

Rule 3.11 If at any point one chooses at random between edges of equal weight, there may be
more than one minimum spanning tree. To see if the spanning tree is unique, write down the
equal weight edges and choose one. If the other edge(s) are not in the final minimum spanning
tree the minimum spanning tree is not unique. If this never happens in the construction of the
minimum spanning tree then it is unique.

Question 3.12 Use Prim’s Algorithm to find a minimum spanning tree of the graph below.

O——O

11

Figure 3.8

Question 3.13 Use Prim’s Algorithm to find a minimum spanning tree of the graph below.
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10

11

Figure 3.9

Note 3.14 Notice that in Question 3.12 you never had to choose between two edges of equal
weight, making the minimum spanning tree you found unique. However in Question 3.13 you
had to choose between edges AC and BD, and whichever one you chose the other wasn’t included,
making the minimum spanning tree non-unique.

3.4 Prim’s Algorithm: Matrix Form

Prim’s Algorithm can also be applied in a less visual way, in the form of a distance matrix.

Definition 3.15 A distance matrix for a graph is a square array where the entry in row A,
column B is the weight of the edge between vertices A and B (if it exists) or blank (if it does not).

Back to our original example in Figure 3.6, we have the following distance matrix.

A|B|C|D|E|F
Al - | 1218 - | - | -
B |12 | - 8 |76 -
C|18] 8 - |- 1415
D| - |7 - -1 8] -
E | - 6 | 4|18|-19
F| - -5 -19] -

Table 3.2

The number in row A, column B, for example, is the weight of the edge between A and B. A dash is
given if there is no edge between the two vertices. Note that this distance matrix differs in style
to the matrices we saw before. In fact it may be more suitable to refer to this at a distance table.
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However the convention in other literature is to refer to this as a distance matrix, so we will do the
same here.

Algorithm 3.16 — Prim’s Algorithm, Matrix Form. To find a minimum spanning tree of a
simple, connected, weighted, undirected graph G with n vertices given in distance matrix form,
Prim’s algorithm consists of the following steps.

1. Choose a vertex, i.e. a column, at random. Cross out the corresponding row.

2. Choose the edge in the column with the smallest edge weight. This has the effect of
choosing a second column. Cross out the corresponding row, which contains this edge.

3. Look at all selected columns, and choose the edge in those columns which has the smallest
edge weight and is not crossed out. This has the effect of choosing another column. Cross
out the corresponding row, which contains this edge.

4. Repeat step 3 until all columns are selected.

Note: If at any point there is a choice between two or more edges of equal weight, choose one at
random.

Example 3.17 Apply the matrix form of Prim’s Algorithm to the distance matrix given below.

A|B|C|D|E|F
Al - | 1218 - | - | -
B |12 | - 8 | 716 -
C|18 | 8 - |- 1415
D| - | 7 - |- | 8-
E | - 6 | 4|8]|-19
F | - - 501-19]-

Table 3.3

The following sequence of tables show Prim’s Algorithm in action. We’ll also start by choosing
vertex E, to see the same sequence of decisions in a different context.

* * *

A|B|C|D|E|F A|B|C|D|E F
Al - |12 |18 - - Al - |12 18| - | - | -
B|12| - | 8 |7 ]6]- B|12| - | 8 |7 ] 6 |-
C| 18| 8| -1]-14]|5 C|B8|8|-|-1@|3
D|-|7)|-]|-1]8]- D|-|7/|-|-1]8]-
E|l-]16|4|8|-19 E|l -|6]|4 |8 9
F| - - S5 -19]- F| - - |5 - -

Table 3.4 Table 3.5
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%k * ES * ES %k *
A|B|C|D|E|F A|B|C|D| E|F
Al - [12] 18 | - = - Al - [12] 18 | - = =
B| 12| - 8 | 7| 6 | - B || - & | Z|(@©6)] -
C | 8| & - -1 @5 C | 8| 8 - -1 @5
D | - 7 - - 8 | - D | - 7 - - 8 | -
E| -| 6|4 | 8] - 19 E| -6 | 4 |8 -
F| - -1 - - F | - -1 35| -9 |-
Table 3.6 Table 3.7
%k * %k % % %k k %k * % *
A | B C|D|E |F A B C | D|E |F
Al - 12 | 18 | - = = Al - 112 | 8| - - | -
B| 1| - 8 | F1](@6)] - B |12 - & o) | -
C| 18| 8 - | -1 @ |5 C B8] 8 - | -1 @ |5
D|-1®@| -1|-| 8 |- D| - (7) - | -1 8 |-
E| - 6 4 = E | - 6 4 =
F| - - 1| - = F| - = 5 | - =
Table 3.8 Table 3.9

Notice here that we made the exact same sequence of decisions. We chose edges CE, then CF,
BE, BD and AB.

Note 3.18 The reason this is the same Prim’s algorithm as before is as follow. The algorithm
begins the same in that we choose a vertex at random and then the “cheapest” edge. This edge
was CE, so we then looked at all of the edges incident to C or E. Continuing in this way, the
selected columns are the vertices already included in the tree 7. The crossed out edges are the
edges that cannot be chosen, as if we choose a crossed out edge in a selected column it is incident
to two edges in 7', and thus will create a cycle if included.

Rule 3.19 The test for whether or not a minimum spanning tree found using the matrix form
of Prim’s Algorithm is unique is identical to the first form of Prim’s Algorithm. If at any point
one chooses at random between edges of equal weight, there may be more than one minimum
spanning tree. To see if the spanning tree is unique, write down the equal weight edges and
choose one. If the other edge(s) are not in the final minimum spanning tree the minimum
spanning tree is not unique. If this never happens in the construction of the minimum spanning
tree then it is unique. However to check if, say, AB is in the minimum spanning tree, you must
check position AB and BA in the distance matrix.

Question 3.20 Create a distance matrix for the graph in Figure 3.4, and apply the matrix version
of Prim’s Algorithm to find a minimum spanning tree.

Question 3.21 Create a distance matrix for the graph in Figure 3.5, and apply the matrix version
of Prim’s Algorithm to find a minimum spanning tree.
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3.5 Notes on Kruskal and Prim’s Algorithm

3.5.1 Similarities

e Uniqueness: Sometimes there is more than one minimum spanning tree. If two or more
edges have the same edge weight, and in applying Kruskal’s or Prim’s algorithm you can
choose to add one of them, and furthermore the inclusion of one affects whether another will
be included, the minimum spanning tree is not unique.

o Algorithm Type: Both Kruskal’s and Prim’s Algorithm are known as greedy algorithms. A
greedy algorithm is one that makes the most desirable decision now, without regard to the
consequences down the line (hence the name).

e Undirected: Both algorithms are only for undirected graphs.
e Weighted: Both algorithms are only for weighted graphs.

e Simple: It is stated that these algorithms can only be used for simple graphs. One could use
these algorithms on multigraphs by removing loops and multiple edges that are not the edge
of minimum weight between two nodes, and apply the algorithm to the resulting subgraph.
Because this is not an interesting generalisation it is not something we will study.

o Connected: It is also stated that these algorithms can only be used for simple graphs. For a
disconnected graph, one could apply either algorithm to each connected component. Again,
as this is not an interesting generalisation it is not something we will study.

3.5.2 Differences

¢ Visualisation: Prim’s algorithm can be applied to a distance matrix. However to apply
Kruskal’s algorithm one needs a picture of the graph. Sometimes data is more naturally given
in the form of a distance matrix, and when the number of nodes are large it can be hard to
even draw a graph.

e Speed: Prim’s algorithm is faster when the graph is dense (i.e. when there are many edges),
and Kruskal’s algorithm is faster when the graph is sparse (i.e. when there are few edges).
By faster we mean which one is eventually faster when the number of vertices is very large.
This is an important consideration in computer science.

e Connectedness: Prim’s algorithm constructs a larger tree each step. The subgraph in
Kruskal’s algorithm is often not a tree and may even be disconnected at some steps along the
way.

o Approach: Kruskal’s algorithm works by adding the cheapest valid arc at each step. Prim’s
algorithm works by adding a new point in the cheapest way. (Kruskal < ark, Prim < point).

Note 3.22 It is common for students to get confused between Prim and Kruskal’s algorithm. To
remember which is which, KruskaL is when we make a List, and PriM is when we start with a
vertex at randoM, or use a Matrix.
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Dijkstra’s Algorithm

Given a graph, how to we find the shortest path between two vertices? This is a reasonable question,
and one that GPS systems such as Google Maps answer all the time. Disjkstra’s Algorithm gives
us the shortest distance from one vertex, called the source vertex, to any other vertex in the graph.
We'll first consider Dijkstra’s Algorithm for an undirected graph, as in this case the shortest path
from the source vertex to any other vertex is the same as the shortest path from this vertex to the
source vertex.

Algorithm 3.23 — Dijkstra’s Algorithm for Undirected Graphs. Given a simple, connected,
weighted, undirected graph G where the weights represent a distance, to find the shortest path
between any vertex and the source vertex A, Dijkstra’s algorithm consists of the following steps.

1. Draw a table where the first column lists the vertices, and the second is titled “Tentative
Paths”.

2. Start with the vertex A. The distance from A to A is 0. As this is the actual distance to A,
put a tick beside vertex A.

3. (a) Consider every vertex adjacent to A. The weighted edge incident to A and these
vertices gives a “tentative” path from A to each of these vertices, along with a distance.
Write down these tentative paths (and the distance) in the table.

(b) Choose the vertex with the smallest tentative distance; this tentative distance is the
actual distance from A to this vertex (via the associated path). As the shortest path
from A to this vertex is now known put a tick beside this vertex.

4. (a) Consider all vertices adjacent to the vertex ticked in the previous step that are not
already ticked. Use the distance and path from A to the ticked vertex and the edge
connecting the ticked vertex to these adjacent vertices to give a tentative distance and
path from A to these adjacent vertices. If any of these adjacent vertices already have
a tentative path, the new tentative path is whichever path has a smaller distance (if
they’re equal choose one at random).

(b) Choose the unticked vertex with the smallest tentative distance (if two of more are
equal choose one at random); this tentative distance is the actual distance from A to
this vertex (via the associated path). Tick the vertex, as the shortest path from A to
this vertex is now known.

5. Repeat step 4 until all vertices are ticked/chosen.

Note 3.24 If in steps 3 or 4 a new and old tentative distance are equal and one is chosen at
random, and moreover if this tentative distance ends up being the actual distance for this vertex
then the shortest path to this vertex is not unique. Other paths confirmed to be the shortest path
after this may not be unique either. On the other hand, if two unticked vertices have a joint lowest
tentative distance and one is chosen at random the other one will be chosen in the next step so it
doesn’t matter which one is chosen.

Example 3.25 Use Dijkstra’s Algorithm to find the shortest paths between all vertices and
vertex A in the graph below.
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Figure 3.10

The following sequence of tables show Dijkstra’s Algorithm in action. By the end of step 2 we
have Table 3.10. By the end of step 3 we have Table 3.11. All subsequent tables are results of
repeated applications of step 4. In the case where we get a new tentative distance the worst of the
two tentative paths is removed with a strikethretgh-. In reality, you may notice that a new path
is non-optimal before you write it down and choose not to add it at all.
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Vertex | Tentative Paths Vertex | Tentative Paths
v A 0) v A 0)
B v B AB(2)
C C AC(18)
D D
E E
F F
Table 3.10 Table 3.11
Vertex | Tentative Paths Vertex | Tentative Paths
v A 0) v A (0)
v B AB(2) v B AB(2)
C -ACH8)-, ABC(10) C ACE8)-, ABC(10)
D ABD(9) v D ABD(9)
v E ABE(8) v E ABE(8)
F F ABEF(17)
Table 3.12 Table 3.13
Vertex | Tentative Paths Vertex | Tentative Paths
v A (0) v A )
v B AB(2) v B AB(2)
v C -ACH8)-, ABC(10) v C ACA8)-, ABC(10)
v D ABD(9) v D ABD(9)
v E ABE(8) v E ABE(8)
F ABEF(17) v F ABEEAD-, ABCF(15)
Table 3.14 Table 3.15

For example, consider the application of step 4 after Table 3.12. We have just ticked/chosen
vertex E. There are four vertices adjacent to E; B, C, D and F. B is already ticked so we ignore
it. For C, we could add the path ABEC to the list of tentative paths to C, which consists of ABE,
the optimal path from A to E, combined with the direct path EC from E to CD. However the
distance is then 8 + 4, the length of ABE plus the length of EC. This path is worse than the
tentative path ABC we already have for C, so we could not bother writing it at all. The same is
true for D and the path ABED(16), but for F we actually do add the path. Out of the unticked
vertices C has the lowest tentative distance, so we tick this vertex; the actual shortest path from A
to C is ABC and is of length 10.

Note 3.26 Once students are more familiar with the steps outlined in Dijkstra’s Algorithm, they
may notice that step 3 and 4 are not fundamenally different. Moreover they can both be seen as
a two-step process where we add tentative paths, then choose a new vertex, repeating until all
vertices are chosen/ticked. However this memory tool will be more useful after students have
become familiar with the method as it is more formally outlined in Algorithm 3.23.
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Question 3.27 Use Dijkstra’s Algorithm to find the shortest distance from vertex A to each of
the vertices in the graph below.

O——O

11

Figure 3.11

Note 3.28 There is an interesting principle at play here. Looking at our solution, the optimal
path from A to F is ABCF. The optimal path from A to C is ABC, a “subpath” of ABCF'. Similarly
the optimal path between A and B is AB. You could also probably convince yourself (without
applying Dijkstra’s Algorithm again) that the optimal path between B and C is BC as well,
another subpath of ABCF'. This is no accident.

Theorem 3.29 — Bellman’s Principle of Optimality. Any part of an optimal path is itself
optimal.

What does this mean? Well, if the optimal path from A to F is ABCF, then the optimal path to C
has to be ABC, and the optimal path to B has to be AB. In real world terms, if the shortest path
from you house to school passes the library, then this path also has to contain the shortest path to
the library. If instead there was a faster way to the library you could use that path on your way to
school, making your trip to school shorter!

Example 3.30 In a given graph, the shortest path from A to L is ABGHKL. What is the shortest
path from B to K?

It’s BGHK.

Question 3.31 In a given graph, the shortest path from A to L is ABGHKL. What is the shortest
path from G to L?
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Dijkstra’s Algorithm for Directed Graphs

Dijkstra’s Algorithm also works on directed graphs. It is not fundamentally different, except in one
small respect.

Algorithm 3.32 — Dijkstra’s Algorithm for Directed Graphs. Given a simple, connected,
weighted, directed graph G where the weights represent a distance, Algorithm 3.23 can be
followed with some alterations to steps 3 and 4.

1. When trying to find the shortest paths from A to each vertex, only consider adjacent
vertices if the edge goes from the ticked vertex to the adjacent vertex.

2. When trying to find the shortest paths to A from each vertex, only consider adjacent
vertices if the edge goes from the adjacent vertex to the ticked vertex.

Example 3.33 Use Dijkstra’s Algorithm to find the shortest paths from A to all other vertices in
the graph below.

Figure 3.12

The following sequence of tables show Dijkstra’s Algorithm in action.
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Vertex

Tentative Paths

0)

AB®)

AC(3)

| | O Q| W] >

Table 3.17

Vertex

Tentative Paths

0)

AB4)

AC(3)

NN NS

ABD(7)

ABE(10)

|| D Q) W >

ACF(9)

Table 3.19

Vertex

Tentative Paths

)

AB4)

AC(3)

ABD(7)

ABE(10)

Notice how, from Table 3.11 to Table 3.12, we didn’t add a tentative path to E even though C
and E are adjacent. This is because the edge runs in the wrong direction, we can’t go from C to

E along this path.

Vertex | Tentative Paths
v A 0)
B
C
D
E
F
Table 3.16
Vertex | Tentative Paths
v A )
v B AB4)
v C AC(3)
D
E
F ACF(9)
Table 3.18
Vertex | Tentative Paths
v A )
v B AB®4)
v C AC(3)
v D ABD(7)
E ABE(10)
v F ACF(9)
Table 3.20

NINNN NS

| m| | QW >

ACF(9)

Table 3.21

Example 3.34 Use Dijkstra’s Algorithm to find the shortest paths from all vertices to A in the

graph below.
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Figure 3.13

Notice how in this case the paths end at A and so when adding tentative paths the edge connecting
the adjacent vertices comes first and the known shortest path comes after.
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Vertex

Tentative Paths

0)

BA(4)

| | O Q| W] >

Table 3.23

Vertex

Tentative Paths

0)

BA4)

NSNS

CBA(11)

ECBA(20)

|| D Q) W >

FCBA(17)

Table 3.25

Vertex

Tentative Paths

)

BA(4)

CBA(11)

DECBA(25)

ECBA(20)

See that, from Table 3.22 to 3.23 we only add the path BA, as the edge between A and C goes the
wrong way. On the topic of writing the paths, consider the paths we find between Tables 3.24
and 3.25. We combine the edge EC to the known shortest path CBA from C to A to get the path
ECBA from E to A, and similarly for F. Note finally how from Table 3.25 to 3.26 we don’t add
any more paths; this is fine and will happen occasionally, even with undirected graphs.

Vertex | Tentative Paths
v A 0)
B
C
D
E
F
Table 3.22
Vertex | Tentative Paths
v A )
v B BA4)
v C CBA(11)
D
E
F
Table 3.24
Vertex | Tentative Paths
v A )
v B BA4)
v C CBA(11)
D
v E ECBA(20)
v F FCBA(17)
Table 3.26

NINNN NS

| m| | QW >

FCBA(17)

Table 3.27

3.8 Notes on Dijkstra’s Algorithm

e Uniqueness: There may be more than one shortest distance between two nodes. In Dijkstra’s
Algorithm you may have a choice of paths to a vertex when comparing distances which are
equal. If this is the case then any of the shortest paths that contain this vertex will not be

unique.

¢ Distance to all nodes: Dijkstra’s Algorithm gives the shortest distance from the source node
to every node.

¢ Directed: Dijkstra’s Algorithm can be used on directed and undirected graphs.

e Unweighted graphs: Dijkstra’s Algorithm can be used on unweighted graphs by giving
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each edge a weight of 1. This gives the "shortest path" as the path with the fewest edges.

Simple: It is stated that Dijkstra’s Algorithm can only be used for simple graphs. One could
use this algorithm on multigraphs by removing loops and multiple edges that are not the edge
of minimum weight between two nodes, and apply the algorithm to the resulting subgraph.
Because this is not an interesting generalisation it is not something we will study.

Greedy: Dijkstra’s algorithm is a greedy algorithm as at each step we decide what the
optimal path for a new vertex is without considering what’s about to happen next as we
continue to explore the graph.

Visualisation: Dijkstra’s algorithm requires a picture of the graph.
Approach: Dijkstra’s Algorithm figures out the shortest path for a new vertex each step.

Distance between two nodes: Some problems only ask for the shortest path between two
nodes. This means, as a result of the approach, that sometimes you can finish Dijkstra’s
Algorithm early.

Exam Questions

Prim & Kruskal’s Algorithm

Edexcel exam questions on Prim and Kruskal’s algorithm are quite standard. They often ask if
the minimum spanning trees found are unique. They also stipulate whether Prim or Kruskal’s
algorithm should be used and, in the case of Prim’s algorithm, which vertex should be used as a
starting point. Some questions ask the student to draw the minimum spanning tree. Occasionally
questions stipulate that certain arcs have to be part of the minimum spanning tree; in this case
Kruskal’s algorithm must be used with the arcs placed on top of the list and included, regardless
of their weights. Questions like this are unlikely to appear on the Leaving Cert exams but are an
interesting application.

Question 3.35 — Old D1 January 2002 Q3(i).
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(i)

A B C D E F
A — 10 12 13 20 9
B 10 — 7 15 11 7
C 12 7 — 11 18 3
D 13 15 11 - 27 8
E 20 11 18 27 — 18
F 9 7 3 8 18 -

of a network.

you selected the edges.

Figure 3.14

(b) Draw your minimum spanning tree and find its total length.

(c) State whether your minimum spanning tree is unique. Justify your answer.

The table shows the distances, in metres, between six nodes A, B, C, D, E, and F

(a) Use Prim’s algorithm, starting at A, to solve the minimum connector problem
for this table of distances. Explain your method and indicate the order in which

(4)
(2)
1)

Question 3.36 — Old D1 January 2004 Q6.
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A B C D E F
A _ 7 3 - 8 11
B 7 - 4 2 - 7
C 3 4 - 5 9 -
D - - 3
E 8 - 9 6 - -
F 11 7 - 3 - -

The matrix represents a network of roads between six villages A, B, C, D, E and F. The value
in each cell represents the distance, in km, along these roads.

(a) Show this information on the diagram in the answer book.
(2)

(b) Use Kruskal's algorithm to determine the minimum spanning tree. State the order in
which you include the arcs and the length of the minimum spanning tree. Draw the
minimum spanning tree.

(5)

(c) Starting at D, use Prim’s algorithm on the matrix given in the answer book to find the
minimum spanning tree. State the order in which you include the arcs.

(3)

Figure 3.15

Question 3.37 — OIld D1 January 2005 Q3.
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Figure 2

D 17 E 21 G

0 g

31
12 27

B 45 H 39 J

The network in Figure 2 shows the distances, in metres, between 10 wildlife observation
points. The observation points are to be linked by footpaths, to form a network along the arcs
indicated, using the least possible total length.

(a) Find a minimum spanning tree for the network in Figure 2, showing clearly the order in
which you selected the arcs for your tree, using

(i) Kruskal's algorithm,
(3)
(ii) Prim’s algorithm, starting from A.

(3)

Given that footpaths are already in place along AB and FI and so should be included in the
spanning tree,

(b) explain which algorithm you would choose to complete the ree, and how it should be
adapted. (You do not need to find the tree.)

(2)

Figure 3.16

Question 3.38 — Old D1 June 2003 Q3.

59
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(@) Describe the differences between Prim’s algorithm and Kruskal's algorithm for finding a
minimum connector of a network.

Figure 2
o 25 F
15
35 14
A
17

B 24 21

E

18 16 20
D 32 G

(b) Listing the arcs in the order that you select them, find a minimum connector for the
network in Fig. 2, using

(i) Prim’s algorithm,

(ii) Kruskal’s algorithm.
4)

Figure 3.17

The questions on minimum spanning trees in the Applied Maths Sample paper and 2023 paper did
not stipulate whether Prim or Kruskal’s algorithm should be used. It was also less specific than the
Edexcel papers in the form of the answer, not asking students to list the arcs in order of inclusion,
simply saying “relevant supporting work must be shown”. If applying Kruskal’s algorithm showing
our list of edges complete with v and X is sufficient. If applying either the graph or distance matrix
form of Prim’s algorithm it should be stated which vertex the student is starting with and listing the
edges included in order of inclusion.

Example 3.39 — Sample Paper Q5(a)(ii).
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Question 5

(a) Inthe network shown below, the edges represent roads and the nodes represent the
junctions of two or more roads, labelled with the letters A to N. The weight of each edge
represents the distance (in km) between a pair of junctions.

(ii) A group of engineers want to close down some of the roads to carry out maintenance work.
They wish to close down as much of the road network as possible while still allowing a
person to drive between any two junctions on the network.

Using an appropriate algorithm, find the minimum spanning tree for the network.
Name the algorithm you used. Relevant supporting work must be shown.

Figure 3.18

We will show a solution for both methods.

Kruskal’s Algorithm: The table on the right below is a sufficient answer; however students may
find it helpful to highlight edges on the graph shown as they are included to make sure cycles
aren’t made. This should be done in pencil in case mistakes are made.
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Edge | Weight
KL 4 4
JL 6 v
IM 7 v
DF 8 4
BD 9 v
LM 9 X
BE 10 4
CD 11 v
EF 12 X
0 12 v
LN 12 v
AC 12 v
IL 13 X
MN 14 X
DE 14 X
GI 15 v
KN 15 X
HK 16 4
AB 17 X
HL 17 X
EH 18 4
Gl 19
FI 20
HI 21
CG 23
DG 24
AD 25
Figure 3.19 Table 3.28

Prim’s Algorithm: If we start with vertex A, we get the minimum spanning tree below, along
with the order of inclusion.
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Edges in order of inclusion
AC
CD
DF
BD
BE
EH
HK
KL
JL
M
LN

0]
GI
EH

Figure 3.20 Table 3.29

3.9.2 Dijkstra’s Algorithm

Edexcel exam questions on Dijkstra’s Algorithm usually consist of a standard question asking
students to apply Dijkstra’s algorithm to a graph. Some questions then ask the student to find the
shortest route that does or does not go through a given node, or asks a question about the shortest
distance between another two nodes that requires applying Bellman’s Principle of Optimality. The
EdExcel papers had no questions on Dijkstra’s algorithm for directed graphs.

Question 3.40 — Old D1 January 2002 Q4.
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Figure 1
A B C D
w W W |
4 G 6
1 2 8 4
Es F: Gl s H
4 5 2
5 7 3 1
. & » 9
I 2 J 4 K 1 L

Figure 1 shows a network of roads. Erica wishes to travel from A to L as quickly
as possible. The number on each edge gives the time, in minutes, to travel along
that road.

(a) Use Dijkstra’s algorithm to find a quickest route from A to L. Complete all the
boxes on the answer sheet and explain clearly how you determined the quickest
route from your labelling.

7)

(b) Show that there is another route which also takes the minimum time

M

Figure 3.21

Question 3.41 — OIld D1 January 2009 Q6.
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Figure 4

Figure 4 shows a network of roads through eight villages, A, B, C, D, E, F, G and H. The number
on each arc is the length of that road in km.

{a) Use Dykstra’s algorithm to find the shortest route from A to H. State your shortest route and

its length.
(3)

There 15 a fair in village C and you cannot drive through the village. A shortest route from A to H
which avoids C needs to be found.

(b) State this new minimal route and its length.

(2)

Figure 3.22

Question 3.42 — Old D1 January 2011 Ql.




66 Chapter 3. Algorithms on Graphs

figure 1

Figure 1 shows a network of roads between eight villages, A, B, C, D, E, F, G and H. The number
on each arc gives the length, in miles, of the corresponding road.

(a) Use Dykstra’s algorithm to find the shortest distance from A to H.

(3)
(b} State your shortest route.

(1)
(c) Write down the shortest route from H to C and state its length.

(2)

Figure 3.23

Question 3.43 — Old D1 January 2012 Q4.
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C 20 H
37 48 20 71
F
A 27 J
15
27
68 20
1
20 D 20
45
12 18
-
B 20 ¥ 15 G
Figure 5

Figure 5 models a network of roads. The number on each edge gives the time, in minutes, taken to
travel along that road. Olivia wishes to travel from A to J as quckly as possible.

{a) Use Dijkstra’s algorithm to find the shortest time needed to travel from A to J. State the shortest

route.
(7N
On a particular day Olivia must include G in her route.
(b} Find a route of minimal time from A to I that includes G, and state its length
(2)

Figure 3.24

The sample paper and 2023 paper both had one question on Dijkstra’s Algorithm which were
completely standard, if a bit long.

Example 3.44 — Sample Paper Q5(a)(ii).
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(a)

(i)

Question 5

In the network shown below, the edges represent roads and the nodes represent the
junctions of two or more roads, labelled with the letters A to N. The weight of each edge
represents the distance (in km) between a pair of junctions.

Use Dijkstra’s algorithm to find the shortest path from junction A to junction N.
Calculate the length of the shortest path. Relevant supporting work must be shown.

Figure 3.25

The solution without workings is shown below.

Therefore the shortest path from A to N is ACGJLN which is of length 72 km.

Tentative Paths
0)

AB(17)
AC(12)
ACD(23)
ABE(27)
ACDEF(@31)
ACG(35)
ABEH(45)
ACGI(50)
ACGIJ(54)
ABEHK(61)
ACGIJL(60)
ACGIM(61)
ACGILN(72)

Vertex

ANENENENENENENENENENENENENEN

ZIZ R =~ Qoo I Ol wE| >

3.10 Summary

Understand what an algorithm is.

Be able to use Kruskal’s Algorithm.

Be able to use Prim’s Algorithm using a graph.

Be able to use Prim’s Algorithm using a distance matrix.

Know that Kruskal and Prim’s Algorithm give a Minimum Spanning Tree for the original
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graph.
¢ Know when Kruskal and Prim’s Algorithm result in a non-unique Minimum spanning Tree.

e Understand that both Kruskal and Prim’s Algorithm are for weighted, undirected, simple,
connected graphs.

e Know that both Kruskal and Prim’s Algorithm are greedy algorithms.

¢ Know that while Kruskal’s Algorithm can only be applied using a graph, Prim’s Algorithm
can be applied to a graph or to a distance matrix.

e Understand how Kruskal and Prim’s Algorithm vary in approach; Kruskal’s Algorithm adds
an ark at each step, and may construct a disconnected subgraph at times before it is finished,
whereas Prim’s algorithm adds a point and so always constructs a tree at each step.

¢ Be able to use Dijkstra’s Algorithm for both directed and undirected graphs.

e Understand that Dijkstra’s Algorithm gives the shortest path between the source node and
every other node, and so if you only want the shortest path between two nodes you may be
able to finish the algorithm early.

e Understand Bellman’s Principle of Optimality and its consequences.

e Know when Dijkstra’s Algorithm results in a non-unique shortest path, and which paths are
non-unique.

e Understand that Dijkstra’s Algorithm can also be used on directed or undirected, and on
weighted or unweighted graphs, but that the graph should be simple and connected.

o Know that Dijkstra’s Algorithm is a greedy algorithm.
e Know that Dijkstra’s Algorithm can only be applied using a graph.

e Understand the approach of Disjktra’s Algorithm; it figures out the shortest path for a single
new vertex at each step.

e As a final note, we have covered how to apply Kruskal’s, Prim’s and Dijkstra’s Algorithm.
However we did not study why they give the optimal paths or minimum spanning tree. This
will be revisited in 6th Year.

Notes on the Exam, and Work Still to Cover

Exam questions on this topic are likely to mainly consist a straightforward application of Prim,
Kruskal or Dijkstra’s algorithm, although they may include some “curveball” questions on topics
like Bellman’s Principle of Optimality or similar, like the EdExcel past papers.

So far both past papers (the sample and 2023) gave students the choice between using Prim and
Kruskal’s algorithm and there have been no questions asking students to apply Dijkstra’s algorithm
to a directed graph.
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3.12 Homework

Kruskal’s Algorithm

1. Use Kruskal’s Algorithm to find a Minimum Spanning Tree for each of the following graphs.
State in each case whether or not the tree is unique. If there is more than one, draw the other
tree(s) (it is not required to show your work for the additional tree(s)).

Figure 3.26
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Prim’s Algorithm

2. Use Prim’s Algorithm to find a Minimum Spanning Tree for each of the graphs in Figure
3.26. State in each case whether or not the tree is unique. If there is more than one, draw the
other tree(s) (it is not required to show your work for the additional tree(s)).

Prim’s Algorithm: Matrix Form

3. For each of the subfigures in Figure 3.26, write down the distance matrix (no need to Apply
Prim’s Algorithm).

4. Apply the matrix form of Prim’s Algorithm to each of the following distance matrices. State
in each case whether or not the Minimum Spanning Tree you find is unique. If there is more
than one, find the other tree(s) (it is not required to show your work for the additional tree(s)).
Draw each of the trees, and calculate their total weight.

A | B D| E | F
Al - [ 1411 - 8 |12
A|B|C|D B |14 | - - -1 9 -
Al -1|13|7]- c| 11| - -1 312 |7
B|[3|-1]5]5 D| - 3 1-1416
C|7|5]|-1]4 E| 8|9 |2 |4]| - |16
D|-|5|4] - F|12 ] - 71616 -
Table 3.30 Table 3.31
A|B|C|D|E|F|G|H]|I J
A 6 | - -1-113]-1-1-71-
Bl6 |- [18[8[17]-1]-1-1-1-+-
cl -8 -1 -1-1-1T15]-1]-7-
D| - |8 -] -T114]20]-119] -7 -
E| -7 -1 -[-T1T9]-1T77-
Fl13]-|-12]-1-1-71771-1-+-
G| -|-|15|-]19)-|-1|-1|5]-
H| -] -]-119]-17 - l12]11
I - -1-1-171-157]12]-1710
I -1 -1-7- - -1l -
Table 3.32
Dijkstra’s Algorithm

5. For each of the graphs in Figure 3.26, apply Dijkstra’s Algorithm to find the shortest distance
from each node to node A.

6. In a certain undirected, weighted graph, the shortest path between A and F is ACGBDF'.
What is the shortest path between C and D?
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Dijkstra’s Algorithm for Directed Graphs
7. In each of the following digraphs, use Dijkstra’s Algorithm to find

(a) the shortest path from A to each node,

(b) the shortest path from each node to A.

Figure 3.27
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Kruskal’s Algorithm

(a) Unique

(e) Unique

Figure 3.28
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Prim’s Algorithm

2. Same as previous question.

Prim’s Algorithm: Matrix Form

3.
A|B|C|D]|E
A C|D Al -|13]1]-15
Al - 11197 B|3|-]3]6]|-
B|11| - | 4|6 Cl|1/[3]-1]-/|-
C|l 9|4 |-]2 D|-|6]|-]-]-
D|7]|6]|2]- E|5|-|-1|-]-
Table 3.33 Table 3.34
A/B|C|D|E|F|G|H
Al -13]4)|-| - - - -
A|B|C|D|E]|F B|3|-]19/|-] - - - -
Al - -1 6 3114 C|4|9]| - 1|4 - | -1]10
B | - - 11|16 |4)| - D|-|-|4/|-1]S8 - - -
cC|6 11| -|-1]-1]2 E| - | - 8| - |12 -16
D| -] 6] - - F|-|-|-1|-[12|-1]71]5
E|3 4] -12 - G|-|-|-1|-|-171-17
F|l14]| - |2 1]-]|-] - H|-|-]10]|-|6]|5]7]| -
Table 3.35 Table 3.36
A|B|C|DI/E|F|G|H| I
Al - |2|-14]|-1]-1]10| - 17
A|B|C|D|E|F B|2|-|19|-1]-]- - - | 4
A - 518 - - - |11 C| -19|-1]18]|-] - - - -
B| 5 30 - |11} - - D| 4 8|1 -19 - -
C| 8|3 |-14 - - E -l -19-1]8 - - -
D | - - -1 9 - - F|-|-|-|-1]18|-1]16] - -
E| - |11]|-]19]| - |16/ - G|10]|-]|-]|-1]-]16] - 5 -
F | - - | - 16 | - 8 H S T T S 5 - |11
G|11]| - | -1]-1|- 8 - |7 (4]-1]-1-] - - [ 11 -
Table 3.37 Table 3.38

4. There are many different final distance matrices with -strikethreughs- depending on what
vertex/column you start with. These solutions instead list the edges of the minimum spanning
tree, or trees if there is more than one.
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(a) Tree is non-unique, with edges

AB AB
CD CD
BC or BD

(b) Tree is unique, with edges

CE
CD
DF
AE
BE.

(c) Tree is unique, with edges

GI
ET
1j
HJ
FH
AF
AB
BD
CG.

Dijkstra’s Algorithm

5. There is no need to have multiple answers here; they are written for students’ benefit.

(a)
Vertex | Tentative Paths
A 0)
B AB(11)
C AC(9) or ADC(9)
D AD(7)
(b)
Vertex | Tentative Paths
A 0)
B AB@3)
C AC(1)
D ABD(9)
E AE(5)

(©
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Vertex | Tentative Paths
A 0)
B AEB(7)
C AC(6)
D AED(5)
E AE(3)
F ACF(8)
(d
Vertex | Tentative Paths
A )
B AB(3)
C AC4)
D ACD(8)
E ACDE(16)
F ACHF(19)
G ACHG(21)
H ACH(14)
(e)
Vertex | Tentative Paths
A 0)
B AB(5)
C AC(8) or ABC(8)
D ACD(12) or ABCD(12)
E ABE(16)
F AGF(19)
G AG(11)
()
Vertex | Tentative Paths
A 0)
B AB(2)
C ABC(11)
D AD®4)
E ADE(13)
F ADEF(21)
G AG(21)
H AGH(15)
I ABI(6)

6. CGBD.
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Dijkstra’s Algorithm for Directed Graphs
7. (@ @)

Vertex | Tentative Paths
A 0)
B AB(5)
C ABC(8)
D ABCD(12)
E ABE(16)
F ABEF(32)
G ABEFG(40)

(i)

Vertex | Tentative Paths
0)

BCA(11)

CA(8)

DCA(12)
EDCA(21)
FGA(19)
GA(11)

Q|| o™ g Q= >

® O

Vertex | Tentative Paths
0)

AB(2)

ABC(11)

AD®4)
AGFE(34)
AGF(26)
AG(10)
AGH(15)
AGHI(26)

—| T Q™| m T Q=] >

(i)

Vertex | Tentative Paths
0)

BCDA(21)
CDA(12)

DA(4)

EDA(13)
FEDA(21)
GA(10)
HGA(15)

IA(7)

—| T Q™ m| T Q=] >
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Revision

When revising this chapter, students are best off using the EdExcel papers as they are numerous
and ask questions similar to those in the Leaving Cert exams.

As this is a new topic past exam questions on this chapter are only from the sample paper (Q5) and
the 2023 paper (Q2 (a) and Q7 (a)).



